653 research outputs found

    Reā€evaluation of gellan gum (E 418) as food additive

    Get PDF
    The Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion reā€evaluating the safety of gellan gum (E 418) as a food additive. Following the conceptual framework for the risk assessment of certain food additives reā€evaluated under Commission Regulation (EU) No 257/2010, the Panel considered that adequate exposure and toxicity data were available. Based on the reported use levels, a refined exposure of up to 72.4 mg/kg body weight (bw) per day in toddlers at the 95th percentile was estimated. Gellan gum is unlikely to be absorbed intact and would not be fermented by human intestinal microbiota. There is no concern with respect to carcinogenicity and genotoxicity. No adverse effects were reported in chronic studies at the highest doses tested in mice and rats (3,627 and 1,460 mg gellan gum/kg bw per day, respectively). Repeated oral intake up to 200 mg/kg bw per day for 3 weeks had no adverse effects in humans. The Panel concluded that there is no need for a numerical acceptable daily intake (ADI) for gellan gum (E 418), and that there is no safety concern at the refined exposure assessment for the reported uses and use levels of gellan gum (E 418) as a food additive. The Panel recommended to better define the specifications of gellan gum including the absence of viable cells of the microbial source and the presence of polyhydroxybutyrate (PHB), protein and residual bacterial enzymatic activities

    Reā€evaluation of sodium ferrocyanide (E 535), potassium ferrocyanide (E 536) and calcium ferrocyanide (E 538) as food additives

    Get PDF
    The Panel on Food Additives and Nutrient Sources added to Food (ANS) provided a scientific opinion reā€evaluating the safety of sodium ferrocyanide (E 535), potassium ferrocyanide (E 536), and evaluating the safety of calcium ferrocyanide (E 538) as food additives. The Panel considered that adequate exposure and toxicity data were available. Ferrocyanides (E 535ā€“538) are solely authorised in two food categories as salt substitutes. To assess the dietary exposure to ferrocyanides (E 535ā€“538) from their use as food additives, the exposure was calculated based on regulatory maximum level exposure assessment scenario (maximum permitted level (MPL)) and the refined exposure assessment scenario. Dietary exposure to ferrocyanides was calculated based on mean and high levels consumption of salts in both the regulatory maximum level and the refined scenario. In the MPL scenario, the exposure to ferrocyanides (E 535ā€“538) from their use as a food additive was up to 0.009 mg/kg body weight (bw) per day in children and adolescents. In the refined estimated exposure scenario, the exposure was up to 0.003 mg/kg bw per day in children and adolescents. Absorption of ferrocyanides is low and there is no accumulation in human. There is no concern with respect to genotoxicity and carcinogenicity. Reproductive studies were not available, but a no observed adverse effect level (NOAEL) of 1,000 mg sodium ferrocyanide/kg bw per day (highest dose tested) was identified from a prenatal developmental toxicity study. The kidney appeared to be the target organ for ferrocyanides toxicity and 4.4 mg sodium ferrocyanide/kg bw per day was identified as the NOAEL for the renal effects in a chronic (2ā€year) study in rats. Assuming that the toxicity of this compound is due to the ferrocyanide ion only, the Panel established a group acceptable daily intake (ADI) for sodium, potassium and calcium ferrocyanide of 0.03 mg/kg bw per day expressed as ferrocyanide ion. The Panel concluded that ferrocyanides (E 535ā€“538) are of no safety concern at the current authorised use and use levels

    Re-evaluation of the existing health-based guidance values for copper and exposure assessment from all sources

    Get PDF
    Ā© 2023 Wileyā€VCH Verlag GmbH & Co. KgaA on behalf of the European Food Safety Authority.Copper is an essential micronutrient and also a regulated product used in organic and in conventional farming pest management. Both deficiency and excessive exposure to copper can have adverse health effects. In this Scientific Opinion, the EFSA 2021 harmonised approach for establishing health-based guidance values (HBGVs) for substances that are regulated products and also nutrients was used to resolve the divergent existing HBGVs for copper. The tightly regulated homeostasis prevents toxicity manifestation in the short term, but the development of chronic copper toxicity is dependent on copper homeostasis and its tissue retention. Evidence from Wilson disease suggests that hepatic retention is indicative of potential future and possibly sudden onset of copper toxicity under conditions of continuous intake. Hence, emphasis was placed on copper retention as an early marker of potential adverse effects. The relationships between (a) chronic copper exposure and its retention in the body, particularly the liver, and (b) hepatic copper concentrations and evidence of toxicity were examined. The Scientific Committee (SC) concludes that no retention of copper is expected to occur with intake of 5Ā mg/day and established an Acceptable Daily Intake (ADI) of 0.07Ā mg/kg bw. A refined dietary exposure assessment was performed, assessing contribution from dietary and non-dietary sources. Background copper levels are a significant source of copper. The contribution of copper from its use as plant protection product (PPP), food and feed additives or fertilisers is negligible. The use of copper in fertilisers or PPPs contributes to copper accumulation in soil. Infant formula and follow-on formula are important contributors to dietary exposure of copper in infants and toddlers. Contribution from non-oral sources is negligible. Dietary exposure to total copper does not exceed the HBGV in adolescents, adults, elderly and the very elderly. Neither hepatic copper retention nor adverse effects are expected to occur from the estimated copper exposure in children due to higher nutrient requirements related to growth.Peer reviewe

    Guidance Document on Scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals

    Get PDF
    Publisher Copyright: Ā© 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.This guidance document provides harmonised and flexible methodologies to apply scientific criteria and prioritisation methods for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. In the context of EFSAā€™s risk assessments, the problem formulation step defines the chemicals to be assessed in the terms of reference usually through regulatory criteria often set by risk managers based on legislative requirements. Scientific criteria such as hazard-driven criteria can be used to group these chemicals into assessment groups. In this guidance document, a framework is proposed to apply hazard-driven criteria for grouping of chemicals into assessment groups using mechanistic information on toxicity as the gold standard where available (i.e. common mode of action or adverse outcome pathway) through a structured weight of evidence approach. However, when such mechanistic data are not available, grouping may be performed using a common adverse outcome. Toxicokinetic data can also be useful for grouping, particularly when metabolism information is available for a class of compounds and common toxicologically relevant metabolites are shared. In addition, prioritisation methods provide means to identify low-priority chemicals and reduce the number of chemicals in an assessment group. Prioritisation methods include combined risk-based approaches, risk-based approaches for single chemicals and exposure-driven approaches. Case studies have been provided to illustrate the practical application of hazard-driven criteria and the use of prioritisation methods for grouping of chemicals in assessment groups. Recommendations for future work are discussed.Peer reviewe

    Evaluation of existing guidelines for their adequacy for the microbial characterisation and environmental risk assessment of microorganisms obtained through synthetic biology

    Get PDF
    Publisher Copyright: Ā© 2020 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.EFSA was asked by the European Commission to consider synthetic biology developments for agri-food use in the near future and to determine if the use of this technology is expected to constitute potential risks and hazards for the environment. Moreover, EFSA was requested to evaluate the adequacy of existing guidelines for risk assessment and if updated guidance is needed. The scope of this Opinion covers viable synthetic biology microorganisms (SynBioMs) expected to be deliberately released into the environment. The evaluation was based on: (i) horizon scanning of published information, (ii) gap analysis of existing guidelines covering the scope of this mandate, and (iii) future outlooks. A horizon scan showed that SynBioM applications could be ready for deliberate release into the environment of the EU in the next decade. However, extensively engineered SynBioMs are only expected in the wider future. For the microbial characterisation and the environmental risk assessment, the existing EFSA Guidances are useful as a basis. The extent to which existing Guidances can be used depends on the familiarity of the SynBioM with non-modified organisms. Among the recommendations for updated Guidance, the range of uses of products to be assessed covering all agri-food uses and taking into account all types of microorganisms, their relevant exposure routes and receiving environments. It is suggested that new EFSA Guidances address all ā€˜specific areas of riskā€™ as per Directive 2001/18/EC. No novel environmental hazards are expected for current and near future SynBioMs. However, the efficacy by which the SynBioMs interact with the environment may differ. This could lead to increased exposure and risk. Novel hazards connected with the development of xenobionts may be expected in the wider future.Peer reviewe

    Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment

    Get PDF
    Publisher Copyright: Ā© 2019 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.The Scientific Committee confirms that the Threshold of Toxicological Concern (TTC) is a pragmatic screening and prioritisation tool for use in food safety assessment. This Guidance provides clear step-by-step instructions for use of the TTC approach. The inclusion and exclusion criteria are defined and the use of the TTC decision tree is explained. The approach can be used when the chemical structure of the substance is known, there are limited chemical-specific toxicity data and the exposure can be estimated. The TTC approach should not be used for substances for which EU food/feed legislation requires the submission of toxicity data or when sufficient data are available for a risk assessment or if the substance under consideration falls into one of the exclusion categories. For substances that have the potential to be DNA-reactive mutagens and/or carcinogens based on the weight of evidence, the relevant TTC value is 0.0025Ā Ī¼g/kg body weight (bw) per day. For organophosphates or carbamates, the relevant TTC value is 0.3Ā Ī¼g/kg bw per day. All other substances are grouped according to the Cramer classification. The TTC values for Cramer Classes I, II and III are 30Ā Ī¼g/kg bw per day, 9Ā Ī¼g/kg bw per day and 1.5Ā Ī¼g/kg bw per day, respectively. For substances with exposures below the TTC values, the probability that they would cause adverse health effects is low. If the estimated exposure to a substance is higher than the relevant TTC value, a non-TTC approach is required to reach a conclusion on potential adverse health effects.Peer reviewe

    Guidance on safety evaluation of sources of nutrients and bioavailability of nutrient from the sources

    Get PDF
    Whenever new substances are proposed for use as sources of nutrients in food supplements, foods for the general population or foods for specific groups, EFSA is requested by the European Commission to perform an assessment of their safety and of the bioavailability of the nutrient from the proposed source. This guidance describes the scientific data required to allow an evaluation of the safety of the source within the established framework for risk assessment of food additives and novel food ingredients and the bioavailability of the nutrient from this source. This document is arranged in five main sections: one on technical data aimed at characterising the proposed source and at identifying potential hazards resulting from its manufacture and stability in food; one on existing authorisations and evaluation, providing an overview of previous assessments on the proposed source and their conclusions; one on proposed uses and exposure assessment section, allowing an estimate of the dietary exposure to the source and the nutrient based on the proposed uses and use levels; one on toxicological data, describing approaches which can be used to identify (in conjunction with data on manufacture and composition) and to characterise hazards of the source and any relevant breakdown products; the final section on bioavailability focuses on determining the extent to which the nutrient from the proposed source is available for use by the body in comparison with one or more forms of the same nutrient that are already permitted for use on the positive lists. This guidance document should replace the previous guidance issued by the Scientific Committee for Food and published in 2001

    Reā€evaluation of aluminium sulphates (E 520ā€“523) and sodium aluminium phosphate (E 541) as food additives

    Get PDF
    The Panel on Food Additives and Nutrient Sources added to Food (ANS) provided a scientific opinion reā€evaluating the safety of aluminium sulphates (E 520ā€“523) and sodium aluminium phosphate, acidic (E 541) as food additives. The Panel considered that adequate exposure and toxicity data were available. Aluminium sulphates (E 520ā€“523) and sodium aluminium phosphate, acidic (E 541) are permitted as food additives in only a few specific products and the exposure is probably near zero. Aluminium compounds have low bioavailability and low acute toxicity. There is no concern with respect to genotoxicity and carcinogenicity. The no observed adverse effect level (NOAEL) for aluminium compounds in subchronic studies was 52 mg Al/kg body weight (bw) per day in rats and 90 mg Al/kg bw per day in dogs and the lowest NOAEL for neurotoxicity in rats was 30 mg Al/kg bw per day and for developing nervous system was 10ā€“42 mg Al/kg bw per day in studies in mice and rats. The Panel concluded that aluminium sulphates (E 520ā€“523) and sodium aluminium phosphate, acidic (E 541) are of no safety concern in the current authorised uses and use levels

    Reā€evaluation of calcium silicate (E 552), magnesium silicate (E 553a(i)), magnesium trisilicate (E 553a(ii)) and talc (E 553b) as food additives

    Get PDF
    The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion reā€evaluating the safety of calcium silicate (E 552), magnesium silicate (E 553a) and talc (E 553b) when used as food additives. In 1991, the Scientific Committee on Food (SCF) established a group acceptable daily intake (ADI) ā€˜not specifiedā€™ for silicon dioxide and silicates. The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) recently provided a scientific opinion reā€evaluating the safety of silicon dioxide (E 551) when used as a food additive. The Panel noted that the absorption of silicates and talc was very low; there was no indication for genotoxicity or developmental toxicity for calcium and magnesium silicate and talc; and no confirmed cases of kidney effects have been found in the EudraVigilance database despite the wide and longā€term use of high doses of magnesium trisilicate up to 4 g/person per day over decades. However, the Panel considered that accumulation of silicon from calcium silicate in the kidney and liver was reported in rats, and reliable data on subchronic and chronic toxicity, carcinogenicity and reproductive toxicity of silicates and talc were lacking. Therefore, the Panel concluded that the safety of calcium silicate (E 552), magnesium silicate (E 553a(i)), magnesium trisilicate (E 553a(ii)) and talc (E 553b) when used as food additives cannot be assessed. The Panel considered that there is no mechanistic rationale for a group ADI for silicates and silicon dioxide and the group ADI established by the SCF is obsolete. Based on the food supplement scenario considered as the most representative for risk characterisation, exposure to silicates (E 552ā€“553) for all population groups was below the maximum daily dose of magnesium trisilicate used as an antacid (4 g/person per day). The Panel noted that there were a number of approaches, which could decrease the uncertainties in the current toxicological database. These approaches include ā€“ but are not limited to ā€“ toxicological studies as recommended for a Tier 1 approach as described in the EFSA Guidance for the submission of food additives and conducted with an adequately characterised material. Some recommendations for the revision of the EU specifications were proposed by the Panel

    Reā€evaluation of glycerol esters of wood rosin (E 445) as a food additive

    Get PDF
    The present opinion deals with the reā€evaluation of glycerol esters of wood rosin (GEWR, E 445) when used as a food additive. Regarding GEWR originating from Pinus palustris (longleaf pine) and Pinus elliottii (slash pine), based on the overall toxicity database, and given the absence of reproductive and developmental toxicity data, the Panel concluded that the current acceptable daily intake (ADI) of 12.5 mg/kg body weight (bw) per day for GEWR (E 445) as established by the Scientific Committee on Food (SCF) in 1994 should be temporary pending the provision of such data. This assessment is restricted to GEWR derived from P. palustris (longleaf pine) and P. elliottii (slash pine) and with a chemical composition in compliance with GEWR used in the toxicological testing. The Panel concluded that the mean and the high exposure levels (P95) of the brandā€loyal refined exposure scenario did not exceed the temporary ADI in any of the population groups from the use of GEWR (E 445) as a food additive at the reported use levels. For GEWR originating from Pinus halepensis and Pinus brutia, the Panel noted that concentrations of the fractions of ā€˜glycerol monoestersā€™, ā€˜free resin acidsā€™ and ā€˜neutralsā€™, which are considered to be of particular toxicological relevance, are not known; therefore, the evaluation of chemical equivalence with GEWR originating from P. palustris (longleaf pine) and P. elliottii (slash pine) is not possible; no data on stability were available; no toxicological data were available. Therefore, the Panel concluded that a safety assessment of GEWR originating from P. halepensis and P. brutia could not be performed. The Panel recommended the European Commission to consider an update of the definition of GEWR (E 445) in the EU specifications. It should be indicated that GEWR (E 445) (i) contain, besides the mentioned glycerol diā€ and triesters, a residual fraction of glycerol monoesters, and (ii) contain residual free resin acids and neutrals (nonā€acidic other saponifiable and unsaponifiable substances)
    • ā€¦
    corecore